REFERENCES

CARLSSON, A. & LINDQVIST, M. (1963). Acta pharmac. tox., 20, 140-144.

DHAWAN, B. N., SAXENA, P. N. & GUPTA, G. P. (1961). Br. J. Pharmac. Chemother., 16, 137-145.

ERNST, A. M. (1969). Acta physiol. pharmac. néerl., 15, 141–154.

GAUCHY, C., AGID, Y., GLOWINSKI, J. & CHERAMY, A. (1973). Eur. J. Pharmac., 22, 311-319.

KUSCHINSKY, K. & HORNYKIEWICZ, O. (1972). Ibid., 19, 119-122.

LAHTI, R. A., MCALLISTER, B. & WOZNIAK, J. (1972). Life Sci., 11, 605-613.

MCKENZIE, G. M. (1971). Psychopharmacologia (Berl.), 23, 212-219.

McKenzie, G. M., VIIK, K. & Boyer, C. E. (1973). Fedn Proc. Fedn Am. Socs exp. Biol., 32, 248.

PURI, S. K., REDDY, C. & LAL, H. (1973). Res. Comm. Chem. Pathol. Pharmac., 5, 389-401.

ROTROSEN, J., WALLACH, M. B., ANGRIST, B. & GERSHON, S. (1972). Psychopharmacologia (Berl.), 26, 185-194.

VAN ROSSUM, J. M. (1966). Archs int. Pharmacodyn. Thér., 160, 492-494.

VEDERNIKOV, YU. P. (1970). Psychopharmacologia (Berl.), 17, 283-288.

A refined procedure for determining pA₂ values

 pA_2 Values (Schild, 1947; Arunlakshana & Schild, 1959) are widely used to quantify the affinity of antagonists for a receptor site and also to characterise receptor types *in vitro*. Recently, this method has been used to measure "apparent" pA_2 values *in vivo* (Hayashi & Takemori, 1971). The method is based on a plot of log_{10} (dose ratio -1) against $-log_{10}$ molar concentration of antagonist. However, this procedure does not make the best use of all the available information and may lead to inaccuracies in the estimation of pA_2 . We present a new procedure for measuring pA_2 values that does not possess these disadvantages.

The method of Schild is to estimate the parameters α (intercept on the ordinate) and β (slope) of the straight line:—

$$\log_{10}\left(\frac{C_{m}}{C_{o}}-1\right) = \alpha + \beta \log_{10}M \qquad \dots \qquad \dots \qquad (1)$$

where C_0 is the dose (mg litre⁻¹ in vitro or mg kg⁻¹ in vivo) of the agonist alone which causes 50% of the response being measured (ED50 value) and C_m is the ED50 value of the agonist in the presence of M mol litre⁻¹ in vitro or M mol kg⁻¹ in vivo of antagonist. Thence pA₂ is given by:—

$$pA_2 = \frac{\alpha}{\beta} \dots (2)$$

Although equation (1) is linear and therefore amenable to elementary treatment, the direct relationship between the potency of the agonist (C_m) and the molar concentration of the antagonist (M) is not linear. The direct relationship which is obtained by rearrangement of equation (1) is:—

where all the symbols have the same meaning as in equation (1) except that C_0' is the estimate of the ED50 value for the agonist alone. The pA₂ is derived from equation (2) as before. The advantages of using equation (3) to determine pA₂ values instead of equation (1) are illustrated by reference to Fig. 1.

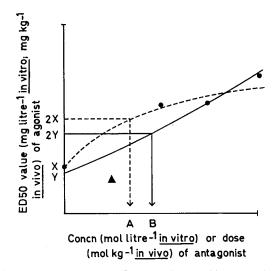


FIG. 1. Using fictitious exemplary data (\bigcirc and \blacktriangle) on arbitrary scales, curves are shown as calculated from equation (1) (----) and from equation (3) (----). The *assumed* value of C_0 for equation (1) is X and $-\log A$ is its corresponding pA_2 . The point \blacktriangle has to be ignored as it is less than X. The *estimated* value of C_0' from equation (3) is Y and $-\log B$ is its corresponding pA_2 .

Thus:---

1. Using equation (1) the ED50 value C_0 is *assumed* to be known (intercept X on the ordinate of Fig. 1) whereas it is in fact obtained by measurement as are the ED50 values for each C_m .

2. Using equation (1) it is not always possible to use all the data since, to be used, each C_m must be greater than C_0 for $\left(\frac{C_m}{C_0}-1\right)$ to be positive. Moreover, using

equation (1) there is a bias towards overestimation of the pA_2 since a value of C_m is more likely to be ignored when C_0 is above rather than when it is below its true value.

All the disadvantages of determining pA_2 values using equation (1) are overcome by using equation (3). Since the availability of computers makes it easy to fit the non-linear equation (3) to experimental data this improved procedure should have wide application for the study of drug antagonism and receptor type both *in vitro* and *in vivo*.

Departments of Pharmacology, Research & Development Services, Research Division, Allen & Hanburys Limited, Ware, Hertfordshire, U.K. October 15, 1973

REFERENCES

ARUNLAKSHANA, O. & SCHILD, H. O. (1959). Br. J. Pharmac. Chemother., 14, 48–58. HAYASHI, G. & TAKEMORI, A. E. (1971). Eur. J. Pharmac., 16, 63–66. SCHILD, H. O. (1947). Br. J. Pharmac. Chemother., 2, 189–206.

* Present address: Roussel Laboratories Ltd., Roussel House, Wembley Park, Middlesex, HA9 0NF.

*S. I. ANKIER

A. J. DAVEY